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We examined the gender productivity gap in science, technology, engineering, mathematics, and other
scientific fields (i.e., applied psychology, mathematical psychology), specifically among star performers.
Study 1 included 3,853 researchers who published 3,161 articles in mathematics. Study 2 included 45,007
researchers who published 7,746 articles in genetics. Study 3 included 4,081 researchers who published
2,807 articles in applied psychology and 6,337 researchers who published 3,796 articles in mathematical
psychology. Results showed that (a) the power law with exponential cutoff is the best-fitting distribution
of research productivity across fields and gender groups and (b) there is a considerable gender
productivity gap among stars in favor of men across fields. Specifically, the underrepresentation of
women is more extreme as we consider more elite ranges of performance (i.e., top 10%, 5%, and 1% of
performers). Conceptually, results suggest that individuals vary in research productivity predominantly
because of the generative mechanism of incremental differentiation, which is the mechanism that
produces power laws with exponential cutoffs. Also, results suggest that incremental differentiation
occurs to a greater degree among men and certain forms of discrimination may disproportionately
constrain women’s output increments. Practically, results suggest that women may have to accumulate
more scientific knowledge, resources, and social capital to achieve the same level of increase in total
outputs as their male counterparts. Finally, we offer recommendations on interventions aimed at reducing
constraints for incremental differentiation among women that could be useful for narrowing the gender
productivity gap specifically among star performers.
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According to the 2016 Science and Engineering Indicators by
the National Science Foundation (NSF), women continue to be
underrepresented in science, technology, engineering, mathematics
(STEM). For example, in early (K–12) education, boys and girls
display similar participation rates in mathematics and science (e.g.,
Hyde, Lindberg, Linn, Ellis, & Williams, 2008; Xie & Shauman,

2003). However, large gender imbalances in representation occur
in higher level academic fields and in the workforce. For example,
although women make up half of the college-educated workforce
in the United States, they only make up 29% of the STEM
workforce. Also, according to a survey by the Association of
American Universities, women chair only 2.7% of engineering
departments, 5.9% of math or physical science departments, and
12.7% of life science departments (Niemeier & González, 2004).

The issue of gender disparities particularly in STEM fields is
also hotly debated in the media and policy-making circles. For
example, in August 2017 a big controversy took place at Google
where engineer James Damore wrote a memo harshly criticizing
the company’s diversity policies and was subsequently fired for
“perpetuating gender stereotypes.” His memo created a firestorm
across Silicon Valley, which takes pride in its progressive views
regarding same-sex marriage, transgender rights, and other gender-
related issues. The question posed by many companies—and
echoed by the media—is this: Why are women underrepresented in
the U.S. technology industry? (Fortune, 2017).

We conducted a research program involving three studies with
the goal of understanding the presence and possible reasons for a
gender productivity gap in STEM (i.e., mathematics, genetics) and
other scientific fields (i.e., applied psychology, mathematical psy-
chology), specifically among star performers. An examination of
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star performers is particularly relevant regarding the gender pro-
ductivity gap because these are individuals who produce output
many times greater than the rest of the individuals holding a
similar job or position (Aguinis & Bradley, 2015; Aguinis &
O’Boyle, 2014; Aguinis, O’Boyle, Gonzalez-Mulé, & Joo, 2016).
Further, stars are highly influential to the individuals around them
and often serve as role models and mentors. For example, prox-
imity to star performers benefits the career advancement of sub-
ordinates through enrichment of the latter’s social capital (Malho-
tra & Singh, 2016). Also, women are more inspired by outstanding
female than male role models (Lockwood, 2006). Moreover, su-
pervisors and mentors provide more psychosocial support to pro-
tégés who belong to the same gender (Koberg, Boss, & Goodman,
1998). Thus, an understanding of the gender productivity gap,
specifically regarding star performers, and the mechanism that
may result in this gap can be particularly useful in terms of
planning interventions that can have trickle-down effects through-
out organizations and even entire professional fields.

Study 1 included 3,853 researchers who published a total of
3,161 articles in the top-10 cited mathematics journals from 2006
to 2015. Study 2 included 45,007 researchers who published a total
of 7,746 articles in the top-five cited genetics journals over the
same time period. Study 3 included 4,081 researchers who pub-
lished 2,807 articles in applied psychology and 6,337 researchers
who published 3,796 articles in mathematical psychology (also for
the same 2006 to 2015 time period). To assess and compare the
productivity distributions by gender, we used the distribution pit-
ting methodological approach developed by Joo, Aguinis, and
Bradley (2017). Distribution pitting is particularly well-suited for
testing our hypotheses because it is a falsification procedure (Gray
& Cooper, 2010; Lakatos, 1976; Popper, 1959) that involves
pitting theoretical distributions against one another with respect to
the observed distribution. Specifically, it involves identifying dis-
tributions that do not reflect the data accurately, and, in doing so,
determining the most likely dominant (i.e., sole-surviving) distri-
bution. As we describe later, a key theoretical implication of
distribution pitting is that each distribution type is associated with
a unique generative mechanism. But, the identification of the
surviving distribution does not completely rule out the presence of
other distributions (and their generative mechanisms); rather, it
identifies the predominant distribution and explanation for the
existence of a particular distribution.

Our results were consistent across the three studies and showed
that the power law with exponential cutoff best fit the observed
individual output distributions overall and also for women and
men separately. The dominance of the power law with exponential
cutoff distribution implies that star performers emerge predomi-
nantly through the generative mechanism of incremental differen-
tiation. In addition to the consistent dominance of incremental
differentiation, results revealed considerable gender productivity
gaps among star performers in favor of men. These gaps are
reflected in the tails of the distributions, which were heavier for
men, thus indicating a greater proportion of male star performers.
Moreover, women were more severely underrepresented among
the top performers than among all performers across all of our
studies, and the degree of underrepresentation increased as levels
of performance increased. In other words, female underrepresen-
tation became more accentuated as we examined the top 10%, 5%,
and 1% of performers. Our results thus offer insights into the

emergence of star performers and also the existence of a gender
productivity gap among star performers, thereby generating
theory-based contributions regarding the mechanisms leading to
the observed gaps as well as practical implications regarding
interventions aimed at reducing them. Moreover, our findings
build upon but also go above and beyond Joo et al. (2017), who
introduced the distribution pitting methodology but did not address
gender issues. In fact, Joo et al. focused on a research question
different from ours and did not even report the number of women
and men included in their samples—let alone any type of theory or
analysis regarding gender-related issues. In short, Joo et al.’s
conceptualization and analyses were not intended to examine
issues about gender, which is the central goal of our studies.

Theoretical Background and Hypotheses

Our theoretical background is unique in that it bridges two
different and, to date, disconnected bodies of research: (a) applied
psychology and other social science research on the reasons for the
existence of a gender productivity gap and (b) natural science
research on the underlying mechanisms that lead to the formation
of particular output distributions. In this section, we integrate these
two literatures by offering hypotheses that connect specific distri-
bution shapes with their underlying mechanisms and, in turn, relate
these mechanisms to existing conceptualizations explaining the
gender productivity gap. First, we describe three competing con-
ceptualizations explaining the gap. Next, we describe various types
of distribution shapes and their generative mechanisms. In doing
so, we offer eight hypotheses that connect each distribution type
with the existing explanations for the gender productivity gap.

Competing Conceptualizations Explaining the Gender
Productivity Gap

There are three broad competing conceptualizations most fre-
quently used to explain the underrepresentation of women in
STEM and other scientific fields. These three conceptualizations
can also be used to explain the gender productivity gap: (a) gender
differences in abilities, (b) gender discrimination, and (c) gender
differences in career and lifestyle choices. Each of the three
conceptualizations offers a unique perspective. The gender differ-
ences in abilities perspective emphasizes differences in biological
factors (e.g., quantitative abilities); the gender discrimination per-
spective emphasizes sociocultural and contextual factors that cre-
ate imbalances in the opportunities and barriers faced by women
compared with men; and the career and life choices perspective
emphasizes gender differences in motivation and other psycholog-
ical factors.

Gender differences in abilities. The first of these conceptu-
alizations is that the gender disparity can be explained largely by
sex differences in quantitative and other related abilities (Halpern,
2000; Halpern et al., 2007). According to this line of research,
biological factors such as exposure to prenatal and postnatal tes-
tosterone and brain lateralization patterns enable men to outper-
form women in mathematical and visuospatial tasks (e.g., Baron-
Cohen, 2003). Men have also been found to have greater
variability in quantitative abilities compared with women, display-
ing greater representation in both the left and right tails of the
ability distribution (Halpern et al., 2007; Wai, Cacchio, Putallaz, &
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Makel, 2010). In sum, the gender differences in abilities perspec-
tive suggests that women’s underrepresentation and the gender
productivity gap are mainly caused by biological factors that
enable men to outperform women in quantitative tasks.

Gender discrimination. The second explanation suggests
that women are pushed out of STEM and other scientific fields
because of discrimination, starting from early childhood and per-
sisting all the way to higher education and professional environ-
ments. Gender biases held by parents and teachers, for instance,
may contribute to a greater allocation of resources to boys than to
girls in early STEM development (Tenenbaum & Leaper, 2003).
Similarly, women may face discrimination in the form of limited
opportunities for advancement (Xu, 2008), be perceived as less
competent than men with comparable achievements (Moss-
Racusin, Dovidio, Brescoll, Graham, & Handelsman, 2012), and
receive less credit for collaborative work (Sarsons, 2017). For
example, reviewers and colleagues often undervalue the quality of
female scientists’ research outputs and are less likely to show
collaboration interest toward them—a bias referred to as the Ma-
tilda effect (Knobloch-Westerwick, Glynn, & Huge, 2013; Lin-
coln, Pincus, Koster, & Leboy, 2012; Merton, 1968; Rossiter,
1993). Also, additional empirical evidence has provided support
for gender discrimination effects in hiring, journal reviewing, and
grant funding (e.g., Chesler, Barabino, Bhatia, & Richards-
Kortum, 2010; Lortie et al., 2007). In short, this perspective
suggests that women are underrepresented and outperformed by
men mainly because of gender discrimination stemming from
sociocultural processes (Carli, Alawa, Lee, Zhao, & Kim, 2016).

Gender differences in career and lifestyle choices. The third
conceptualization is that women’s underrepresentation in STEM
and other scientific fields and the gender productivity gap are
largely the result of particular ways in which women and men tend
to diverge on the career and lifestyle choices they make. According
to this perspective, there are gender differences with respect to a
wide range of psychological factors, which in turn shape people’s
decision to pursue a scientific career and persist in the chosen field
(Ceci & Williams, 2010). That is, men and women differ in their
motivation to pursue and persist in STEM and other scientific
careers (e.g., Ceci & Williams, 2010; Wang & Degol, 2013).
Gender differences in psychological factors such as interests, work
goals, occupational preferences, and work–life/family values may
result in women being more likely to make sacrifices and tradeoffs
during the course of their careers, including the decision to opt out
of STEM and other scientific fields altogether. In sum, according
to this conceptualization, women choose to opt out of STEM and
other scientific fields at higher rates than men at all stages of their
careers because of a wide range of psychological and motivational
factors (Kossek, Su, & Wu, 2017).

Integrating Gender Productivity Gap
Conceptualizations With Generative Mechanisms for
Productivity Distributions

Empirical research in computer science, physics, zoology, and
other fields (e.g., economics) has identified generative mecha-
nisms leading to the formation of specific distributions of out-
comes (Clauset, Shalizi, & Newman, 2009). In this section, we
describe evidence based on dozens of studies across these fields
showing that each type of observed distribution is generated by a

particular mechanism and, thus, serves as a “smoking gun” for the
unique underlying process leading to a specific distributional shape
(Clauset et al., 2009). On the basis of this extensive literature, Joo et
al. (2017) proposed a methodological approach called distribution
pitting, which involves identifying the best-fitting theoretical distri-
bution with respect to the observed productivity distribution among
the following theoretical distribution types: (1) pure power law; (2)
lognormal; (3) exponential tail (including exponential and power law
with an exponential cutoff); and (4) symmetric or potentially sym-
metric (including normal, Weibull, and Poisson). Then, based on the
predominant theoretical shape identified, we can infer the underlying
mechanism that resulted in its formation.

Next, we describe the generative mechanism for each type of
distribution and how the generative mechanisms apply to individ-
ual productivity. We also offer four competing hypotheses based
on the viability of the four generative mechanisms. In addition,
going beyond Joo et al. (2017), we offer a conceptual integration
of research on gender with research on productivity distributions to
offer four competing hypotheses about the mechanisms that would
result in a gender productivity gap among star performers.

Pure power law distribution and self-organized criticality.
The presence of a power law distribution is indicative of a gener-
ative mechanism referred to as self-organized criticality (Bak,
1996), which emphasizes the role of output shocks (i.e., large and
unpredictable increases in output). Self-organized criticality is a
process where observations (e.g., individuals) accumulate small
amounts on an outcome (e.g., output) before reaching a critical
state (i.e., a situation where components accumulated by an indi-
vidual interconnect). After reaching a critical state, depending on
the precise configuration of one’s accumulated components and
their interconnections, even a seemingly trivial event may trigger
large output shocks. For example, research in physics has found
that once enough sand grains have piled up to reach a critical slope,
the drop of another sand grain will cause a sand avalanche. This
process, repeated over many times, will generate a pure power law
distribution of sand avalanche sizes (Bak, 1996). As another ex-
ample, when a start-up reaches a critical state, even a small event
such as a business plan presentation may trigger explosive growth
(Crawford, Aguinis, Lichtenstein, Davidsson, & McKelvey, 2015).

In terms of parameters of this distribution, a set of values from
a variable x follows a pure power law if

p(x) � x�� (1)

where � (�1) is the rate of decay, or how quickly the distribution’s
right tail “falls.” The lower the value of � (closer to 1), the heavier
is the distribution’s right tail. For example, a distribution with � �
2 has a heavier right tail compared with a distribution with � � 3.

In the context of individual productivity, the self-organized
criticality mechanism suggests that a small proportion of individ-
uals experience unpredictable and potentially very large output
shocks after reaching a critical state. For example, a scientist’s
single breakthrough on one project may lead to more break-
throughs in other intricately related projects and thus lead to an
explosive growth in subsequent research productivity. In this
sense, self-organized criticality involves a significant element of
randomness and luck. Thus, it generally takes a long time to reach
a critical state, and most individuals never reach it in their lifetime
(Joo et al., 2017; Taleb, 2007). After individuals reach such critical
states, even a trivial event may cause unpredictably large output
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shocks. Accordingly, large paradigm-shifting breakthroughs may
depend on the successful interaction of multiple components and
events. Essentially, researchers may reach critical states when
certain performance components interconnect (e.g., a set of inter-
related projects regarding potential cures for a single disease).
Subsequently, even a seemingly trivial event such as access to
funding for a single project could trigger large increases in sub-
sequent research productivity. We suggest that such interconnec-
tions may be the key that allows some scientists to experience huge
leaps in scientific productivity or eureka moments. As such, large
output shocks following critical states may be the key process
through which star scientists differentiate their performance from
those of others. Hence, differences in individuals’ productivity
may be driven predominantly by the pure power law distribution’s
generative mechanism, or self-organized criticality.

Hypothesis 1a: Individual productivity of women and men in
STEM and other scientific fields follows a pure power law
distribution.

In terms of gender-based differences in productivity, self-
organized criticality could explain a gender productivity gap
among stars in favor of men, and this gap would be consistent with
both the gender discrimination and career/lifestyle choices per-
spectives. First, the gender discrimination perspective suggests a
productivity gap among stars in favor of men, as certain forms of
discrimination may lead to smaller/fewer output shocks among
women. For example, prior research suggests that women in
STEM fields are generally less favored in important hiring and
promotion decisions. Specifically, in a study where professors in
biology, physics, and chemistry evaluated applications for a lab
manager position, candidates with a female name were less likely
to be hired, received a lower starting salary, obtained less mentor-
ing opportunities, and were generally perceived as less competent
than other candidates with identical application materials but with
a male name (Moss-Racusin et al., 2012). Similarly, an experiment
by Reuben, Sapienza, and Zingales (2014) showed that, in the
absence of information about candidates other than their gender,
women were chosen only 33.9% of the time, which meant that men
were twice more likely to be chosen than women. Studies also
suggest that, due largely to gender discrimination, women in
STEM and other scientific fields are less likely to be promoted to
leadership positions and achieve tenure status, tend to receive less
research funding and support, and are often assigned heavier
teaching loads (Xu, 2008). In short, the gender discrimination
perspective suggests that women are less likely than their male
peers to experience certain events that enable critical states and
subsequent large output shocks.

Second, output shocks may be smaller among women because
of gender differences in career and lifestyle choices. For example,
according to this perspective, women are more likely to make
tradeoffs, such as deferring career goals in pursuit of family goals
or following a spouse’s job location (Ceci & Williams, 2011;
Singh, Zhang, Wan, & Fouad, in press)—tradeoffs that may col-
lectively contribute to smaller and fewer output shocks. In partic-
ular, the decision to marry or have children results in dispropor-
tionate productivity losses and other career-related changes for
women that lead to disadvantages in hiring and promotion (Ceci &
Williams, 2011; Wang & Degol, 2013). For example, a survey of

University of California graduate students found that women with
children were 35% less likely to enter a tenure-track position after
receiving a PhD than married men with children and are 27% less
likely than men to achieve tenure (Mason & Goulden, 2009).
Additionally, regarding promotion to leadership roles, the career
and lifestyle choices perspective suggests that women often stay
away from leadership roles because some prefer to spend more
time teaching and having more opportunities for collegial collab-
oration (e.g., Bentley & Adamson, 2003; Robertson, Smeets, Lu-
binski, & Benbow, 2010).

We argue that the occurrence of sudden and large output shocks
largely depends on the presence of a particularly biased (vs.
supportive) supervisor or a major career and/or life decision made
by the individual. In comparison, gender differences in ability and
other individual differences may have a relatively smaller impact
on enabling output shocks. This is expected because major career/
life choices or discrimination act as greater potential barriers
against female researchers to both (1) reaching critical states
(where one’s accumulated components interconnect) and also (2)
generating larger output shocks after having reached critical states
(given that output shocks occur only after reaching critical states in
the self-organized criticality framework). For example, the choice
to decline a leadership position or failure to obtain it because of
gender-based bias may prevent a female researcher from gaining
the big-picture insights necessary for integrating her existing hu-
man and social capital. Even after a female researcher has reached
a critical state by having obtained and learned from such a lead-
ership position, the subsequent decision to devote larger amounts
of time for nonresearch areas of life or (subtle) gender-based
biases by her fellow male leaders could lower her likelihood of
experiencing very large-sized output shocks. In contrast, although
any stable ability differences across the two genders may prevent
female researchers from reaching critical states, such differences
are less likely to affect the size of subsequent output shocks—the
latter of which is more likely a function of external factors such as
discrimination or abrupt factors such as a major career/life deci-
sion. Accordingly, an integration of the literatures on generative
mechanisms and the gender productivity gap conceptualizations
suggests that the presence of a gender productivity gap under a
power law distribution would largely be the result of gender
discrimination and/or women’s lifestyle choices.

Hypothesis 1b: The pure power law distribution of individual
productivity will have a lighter right tail for women than men.

Lognormal distribution and proportionate differentiation.
Lognormal distributions result from the generative process of
proportionate differentiation, where individuals’ future output is a
distinct percentage of their prior output (Barabási, 2012). Propor-
tionate differentiation suggests that individuals’ prior value on an
outcome (e.g., output) interacts with their accumulation rates in
determining their future amounts on the same outcome. Accumu-
lation rate refers to the average amount of a variable that an
individual produces per time period (e.g., sales generated per
month), whereas prior output refers to

the amount of a variable that each individual has accumulated during
a relatively short period of time (e.g., 1 year) since the beginning of
a common baseline (e.g., since the first date of employment for all
individuals hired in the same year. (Joo et al., 2017, p. 1030)
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As an example from geology, a crystal’s rate of exposure to
additional minerals and its initial size together may determine the
crystal’s subsequent sizes, leading to a lognormal distribution of
crystal sizes (Kile & Eberl, 2003).

Regarding the parameters for this distribution, a set of values
from a variable x follows a lognormal distribution if

p(x) � e�
(ln(x)��)2

2�2 (2)

where Euler’s number e � 2.718. ln�x� is the natural log of x and
is normally distributed. � (�0) is the mean. � (�0) is the standard
deviation. � does not affect the heaviness of the distribution’s right
tail but � does. The higher the value of � (further away from 0),
the heavier is the distribution’s right tail.

In terms of individual productivity, the proportionate differentiation
mechanism suggests that a small proportion of individuals (with the
largest initial outputs and accumulation rates), compared with others,
enjoy larger output loops (i.e., increasingly larger output increases
based on positive feedback between past and future output). To
illustrate, assume there are two researchers, A and B. Also assume
that both are comparably talented, but A starts his tenure-track career
with three publications in top-tier journals, whereas B starts with only
one because of situational factors (e.g., a senior researcher joined the
department and offered A the opportunity to work with him). Here, A
may find it easier to produce subsequent publications because of, say,
greater visibility and more opportunities for collaboration as a result
of starting his academic career with more publications. Thus, even if
both researchers are comparably talented and put in more or less the
same amount of effort, B would not be able to catch up to A in terms
of number of publications unless B is able to increase her accumula-
tion rate enough to eventually offset the impacts of A’s greater initial
output value.

In STEM fields and other scientific domains, individuals’ past
successes have a powerful impact on their subsequent access to
various resources and opportunities and, thus, their potential for
future success (Kwiek, 2018). In early education, for example,
children who display large initial successes in STEM subjects are
given more attention and resources from teachers and parents (e.g.,
tutoring, advanced educational programs), which then helps to
beget even more success. As such, small differences in talent and
early performance can lead to large differences in rewards which,
in turn, translate into disproportionate levels of future success
(Kwiek, 2018). In professional environments, one’s past successes
are similarly linked to future productivity. In a meritocratic fash-
ion, people and organizations make greater investments (e.g.,
funding and collaboration opportunities) in researchers who have
been successful in the past. In sociology, this phenomenon is
referred to as the Matthew effect, where scientists receive greater
recognition and rewards for their work on the basis of their current
renown and visibility (Merton, 1968). In other words, the rich get
richer, as various advantages accumulate for individuals who have
already received recognition (Lincoln et al., 2012). Moreover,
academics may accrue disadvantages as a result of the accumula-
tion of failures, resulting in the poor getting poorer (Kwiek, 2018).
In a recent study demonstrating performance differences among
Polish scholars (e.g., the top 10% of performers produced roughly
half of all journal articles), Kwiek (2018) theorized that the Mat-
thew effect was what primarily drove such large differences in
research productivity. Accordingly, individual productivity may be

driven predominantly by the lognormal distribution’s generative
mechanism of proportionate differentiation.

Hypothesis 2a: Individual productivity of women and men in
STEM and other scientific fields follows a lognormal
distribution.

With respect to gender differences in productivity, the gender
discrimination perspective suggests that women may experience
smaller output loops compared with their male colleagues. In partic-
ular, the feedback mechanism linking women’s prior outputs to their
future outputs may be constrained compared with men, as people
often “overvalue” men’s prior achievements (Reuben et al., 2014),
thereby investing greater resources in men and boys than in women
and girls who display comparable levels of prior success (Brown &
Stone, 2016; Tenenbaum & Leaper, 2003). Accordingly, the gender
discrimination literature suggests numerous ways in which gender-
based actions of others may result in smaller output loops for women.
One example has to do with how female (vs. male) researchers are
evaluated in terms of their prior outputs and their desirability as
potential collaborators, which is likely one of the most fundamental
processes that enable proportionate differentiation for these individu-
als, given that most research conducted in these fields is collaborative
in nature. Prior studies suggest that when people evaluate the past
works of others, they often place disproportionate penalties on women
for coauthored works (i.e., giving them less credit than their male
coauthors) and perceive them less favorably as potential collaborators
(Diekman, Weisgram, & Belanger, 2015; Knobloch-Westerwick et
al., 2013; Sarsons, 2017). Moreover, regarding hiring and promotion,
which is a process that similarly involves others evaluating an indi-
vidual’s past outputs and making decisions that affect future output
gains, female applicants are less favored despite having equivalent
qualifications as their male counterparts because of gender biases
(e.g., Moss-Racusin et al., 2012; Reuben et al., 2014). Additionally,
the literature on stereotype threat (Walton, Murphy, & Ryan, 2015)
shows that when individuals are reminded of negative stereotypes
directed at them (e.g., via biased actions from peers), their perfor-
mance (e.g., women’s performance on math tasks) diminishes.

As discussed, in STEM and other scientific fields, the connec-
tion between one’s prior and future output is rooted primarily in
the actions of other people (i.e., an external factor). In other words,
one’s past outputs matter in terms of future output gains, because
people tend to invest more in highly productive individuals, which
enables those individuals to enjoy larger output loops. In contrast,
intrapersonal factors such as ability and motivation, although im-
portant for initiating positive feedback loops between initial and
future output, might be less impactful in determining the size and
duration of such feedback loops. Accordingly, the presence of a
gender productivity gap under a lognormal distribution would
largely be the result of gender discrimination.

Hypothesis 2b: The lognormal distribution of individual pro-
ductivity will have a lighter right tail for women than men.

Exponential tail distributions and incremental
differentiation. Exponential tail distributions (i.e., exponential
and the power law with exponential cutoff distributions) result
from the same generative mechanism called incremental differen-
tiation. This mechanism implies that individuals’ output increases
at an approximately linear rate based on their accumulation rate
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(Amitrano, 2012). Unlike proportionate differentiation, prior out-
put is not linked to future output through a positive feedback loop.
Rather, future value is simply a function of individuals’ accumu-
lation rates. For example, research in economics has documented
that people’s wages accumulate at different linear rates as a result
of heterogeneity in labor productivity across individuals, leading to
an exponential distribution of cumulative wages (Nirei & Souma,
2007).

Regarding parameters, a set of values from a variable x follows
an exponential distribution if

p(x) � e��x (3)

where Euler’s number e � 2.718. � (�0) is the rate of decay, or
how quickly the distribution’s right tail falls. The lower the value
of � (closer to 0), the heavier is the distribution’s right tail.

Regarding power law with exponential cutoff distributions, a set
of values from a variable x follows this distribution if

p(x) � x��e��x (4)

where Euler’s number e � 2.718. Both � (�1) and � (�0) are
rates of decay, or how quickly the distribution’s right tail falls. The
lower the values of � (i.e., closer to 1) and � (i.e., closer to 0), the
heavier is the distribution’s right tail. Between the two rates of
decay, � is “stronger” in terms of making the distribution’s right
tail fall.

In terms of individual productivity, top performers with the
highest accumulation rates enjoy larger output increments (i.e.,
linear increases in output) than others. As an example, because of
their higher accumulation rates, some researchers may produce a
greater number of publications compared with other researchers
who began their academic careers around the same time. Individ-
uals in STEM and other scientific fields may vary in terms of their
productivity primarily because of differences in their accumulation
of various input components that, together, have a stable (and
linear) impact on their future output increases. Accordingly, prior
studies have demonstrated that the accumulation of inputs such as
social capital, training, and research hours lead to greater incre-
mental growth in future outputs. For example, in a study involving
professors from two U.S. research institutions, van Eck Pe-
luchette and Jeanquart (2000) found that individuals who had
multiple mentors experienced significantly higher levels of
career success, on objective as well as subjective measures, and
at all stages of their careers (i.e., early, middle, and late stage),
compared with others who did not. In another study, which
involved faculty members from 92 academic otolaryngology
departments, findings showed that fellowship-trained otolaryn-
gologists had significantly higher research productivity than
non-fellowship-trained otolaryngologists, as measured by the
h-index, which considers both the number of articles published
and the number of citations received by each (Eloy, Svider,
Mauro, Setzen, & Baredes, 2012). In yet another study, Kwiek
(2018) found that the top 10% of Polish academics, on average,
spent 5 more hours per week on research, and the working time
differential was even greater among researchers in mathematics
and physical sciences (i.e., 12 more hours per week). As such,
researchers may vary in their total publications primarily be-
cause of differences in the rate at which they acquire important
input components such as social capital (e.g., mentors and

professional connections), education (e.g., AP courses, graduate
degrees), advanced scientific training, and working hours. Ac-
cordingly, individual productivity may be driven mainly by the
exponential tail distributions’ generative mechanism, or incre-
mental differentiation.

Hypothesis 3a: Individual productivity of women and men in
STEM and other scientific fields follows an exponential tail
distribution.

With respect to gender differences in productivity, there may
be a productivity gap in favor of men because of certain forms
of gender discrimination that result in lower output increments
for women compared with men with comparable accumulation
rates. For example, John and Sally may have similar accumu-
lation rates on major input components—such as knowledge,
social capital, and other research-related resources—yet John
may have a greater publication rate (i.e., larger output incre-
ments) than Sally because of consistent gender biases in peer
reviews. Prior literatures demonstrate that women working in
male-dominated fields are often perceived by others as lacking
the innate talent or “genius” required to be successful (Cheryan,
Ziegler, Montoya, & Jiang, 2017). When such stereotypes (i.e.,
tendency to undervalue female scientists’ abilities) are held by
gatekeepers such as mentors, potential collaborators, hiring
committees, and other decision makers (e.g., journal editors),
female scientists may need to overaccumulate input compo-
nents and thus achieve higher accumulation rates to achieve the
same outputs as their male counterparts. For example, even if
John and Sally enter the same institution with identical quali-
fications, gender biases (and gender homophily) among top
(male) mentors in the department could result in a greater
publication rate for John, unless Sally increases her accumula-
tion rate of input components to offset this effect. In addition to
gender discrimination, it is also possible that men and women
considerably differ in their accumulation rates because of gen-
der differences in abilities and/or lifestyle choices. However,
these differences may have a smaller impact on gender differ-
ences in output, given that prior research largely (though not
exclusively) attributes situational constraints (e.g., limited re-
sources) rather than person-based factors (e.g., ability) to ex-
plain differential levels of positive skew in exponential-tail
distributions (Amaral, Scala, Barthélémy, & Stanley, 2000; Joo
et al., 2017). Accordingly, the presence of a gender productivity
gap under an exponential tail distribution may largely be a
reflection of the impact of gender discrimination.

Hypothesis 3b: The exponential tail distribution of individual
productivity will have a lighter right tail for women than men.

Symmetric or potentially symmetric distributions and
homogenization. Finally, three symmetric or potentially sym-
metric distributions (i.e., normal, Weibull, and Poisson distribu-
tions) result from the generative mechanism of homogenization
(Araújo & Herrmann, 2010). Unlike the other generative mecha-
nisms described so far (i.e., self-organized criticality, proportion-
ate differentiation, and incremental differentiation), homogeniza-
tion reduces individual variability in outputs over time. In zoology,
for example, the homogenization processes of various species are
characterized by a normal distribution (Spear & Chown, 2008). As

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1288 AGUINIS, JI, AND JOO



another example, uniform expectations of production or service
tend to homogenize workers’ outputs (e.g., Groshen, 1991).

In terms of parameters, a set of values from a variable x follows
a normal distribution if

p(x) � e�
(x��)2

2�2 (5)

where Euler’s number e � 2.718. � (�0) is the mean. � (�0) is
the standard deviation. � does not affect the lightness (i.e., thin-
ness) of the symmetric tails. In contrast, � does. The lower the
value of � (i.e., closer to 0), the lighter are the distribution’s
symmetric tails.

A set of values from a variable x follows a Weibull distribution if

p(x) � (x � �)	�1e�(x � �)	
(6)

where Euler’s number e � 2.718. 	 (�0) is the extent to which the
distribution is “pulled” up and to the right. The lower the value of
	 (i.e., closer to 0), the lower is the height of the bell-shaped head
and heavier is the right tail. � (�0) is the extent to which the
distribution is “pushed” down and stretched to the sides. The lower
the value of � (i.e., closer to 0), the higher is the height of the
distribution’s bell-shaped head.

A set of values from a variable x follows a Poisson distribution
if

p(x) � �x

x! (7)

where � (�0) is the mean, which also equals the variance of the
distribution. The lower the value of � (i.e., closer to 0), the heavier
is the distribution’s right tail.

In the context of individual productivity, this generative mech-
anism suggests that individuals are subject to output homogeniza-
tion, or the reduction of differences in individual output. The
reason is that there are constraints that act as a floor and ceiling to
future output differences. In STEM and other scientific fields,
individuals undergo certain processes that act as a floor to future
output. For example, promotion policies involving the denial of
tenure to assistant professors who fail to produce a certain high
number of publications act as such a floor, thus limiting the
variability in researchers’ productivity. In this manner, individual
productivity may be driven predominantly by the (potentially)
symmetric distributions’ dominant generative mechanism, or ho-
mogenization.

Hypothesis 4a: Individual productivity of women and men in
STEM and other scientific fields follows a (potentially) sym-
metric distribution.

With respect to gender differences in productivity, women’s
productivity compared with men’s may undergo greater homoge-
nization over time because of certain gender differences in career
and life choices. Specifically, women may experience dispropor-
tionately greater productivity losses as a result of certain choices,
such as the decision to have children early in one’s career (Ceci,
Ginther, Kahn, & Williams, 2014). In certain fields, women com-
pared with men may also place greater priority on family respon-
sibilities and make more career sacrifices over the course of their
careers (Singh et al., in press). Such choices act as a dispropor-
tionately lower ceiling to women’s future productivity, resulting in

greater output homogenization among women than among men.
Compared with gender differences in career and life choices,
which tend to be abrupt in their occurrence, the ceiling effects of
gender discrimination and gender differences in abilities on pro-
ductivity, we argue, are relatively more constant over time, thereby
exerting a smaller impact on the strength/presence of output ho-
mogenization processes. Accordingly, the presence of a gender
productivity gap under a (potentially) symmetric distribution may
largely be a reflection of women’s choices.

Hypothesis 4b: The (potentially) symmetric distribution of
individual productivity will have a lighter right tail for women
than men.

In summary, integrating gender productivity gap conceptualiza-
tions with generative mechanisms for productivity distributions
allowed us to offer four competing hypotheses (i.e., Hypotheses
1a, 2a, 3a, and 4a) about the specific shape of the distribution and,
implicitly, the underlying mechanisms leading to that particular
shape. Also, for the case of all of the distributions, we proposed a
similar hypothesis (i.e., Hypotheses 1b, 2b, 3b, and 4b), stating that
the right tail on the distribution will be lighter for women than
men.

Study 1: Method

Sample

We examined the productivity of researchers in the field of
mathematics who have published at least one article in one of the
10 most influential mathematics journals from January 2006 to
December 2015. The field of mathematics is one of the most
male-dominated disciplines within STEM and represents a domain
where some of the most extreme gender productivity gaps might
be observed. For example, only 7.3% of full professor positions in
the field of mathematics are occupied by women (Ceci & Wil-
liams, 2010). The sample size was 3,853 unique researchers, of
whom 360 (9.3%) were women.

The Institutional Review Board at Indiana University approved
our data collection (Protocol Number: 1512087389; Title: “Under-
standing the Gender Performance Gap among Star Performers in
STEM Fields”). Our study was judged to be exempt from institu-
tional review board review because of the use of secondary pre-
existing data.

Journal Selection Criteria

We identified the 10 most influential journals from the mathe-
matics category of Web of Science based on their mean impact
factor from 2011 to 2015 as follows: Acta Numerica, Journal of
the American Mathematical Society, Communications on Pure and
Applied Mathematics, Acta Mathematica, Annals of Mathematics,
Fractional Calculus and Applied Analysis, Foundations of Com-
putational Mathematics, Publications Mathématiques de l’IHÉS,
Inventiones Mathematicae, and Bulletin of the American Mathe-
matical Society. The impact factor of a journal is the average
number of citations received per article published in that journal
during the two preceding years (Aguinis, Suarez-González, Lan-
nelongue, & Joo, 2012). For example, if a journal has an impact
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factor of 4 in 2015, then its articles published in 2014 and 2013
received four citations each, on average, in 2015.

The total number of articles published from January 2006 to
December 2015 was 3,161. This total may appear somewhat small
considering that that it includes 10 journals and a 10-year period.
But this is due to publication practices in mathematics that differ
from those of applied psychology and related fields. As an illus-
trative comparison, Journal of Applied Psychology (JAP) alone
published 1,082 articles during the 10-year period from 2001 to
2010 (Kruschke, Aguinis, & Joo, 2012).

Measures

Research productivity: Number of articles published in top-
tier journals. We measured research productivity by counting
the total number of articles published by each author in the
previously mentioned 10 journals during the 10-year period from
January 2006 to December 2015. We used the Web of Science
database to identify all articles and their authors. Also, we used the
metadata associated with each of the articles to record the names
of all authors, and we used the Open Researcher and Contributor
ID to identify unique authors as needed.

We initially considered taking authorship order into account
rather than assigning an equal unit weight to each author per article
published. For example, Howard, Cole, and Maxwell (1987) de-
veloped a procedure that determines authors’ rank-weighted “au-
thor credits” that are proportional to their ordinal position. How-
ever, in contrast to practices in applied psychology, authorship
credit in most STEM fields is not based on relative contribution
such as the first author contributing the most, then the second, and
so on in descending order. For example, in the field of mathemat-
ics, the listing of multiple authors is usually in alphabetical order
with no relation to the degree of an author’s contribution to an
article. Appendix A in the online supplemental material includes a
more detailed description of author ordering and its meaning in
STEM journals, which led to our choice to use unit weights rather
than author credits.

Gender. We recorded the gender of each author based on his
or her first name. In cases where the gender associated with a first
name was ambiguous (e.g., by the use of initials only or gender-
neutral first names), we visited the author’s web page (personal,
faculty, profile on ResearchGate or Google Scholar) to ascertain
their gender. In cases where the first name was ambiguous and we
could not find a web page, photo, or other information that would
reveal an author’s gender, we used the website Namepedia.org to
find the gender that is most strongly associated with a name. When
a first name is entered into the Namepedia database, it generates
entries for that name by country and language, including miscel-
laneous information such as the regions and languages to which
that name can be traced back to and whether the gender associated
with the name in that particular region is male, female, mostly
male, or mostly female. For example, Jean is more likely a female
name in English-speaking countries, but it is usually a male name
in France. In such cases where a first name can be associated with
different genders depending on the region, we first deduced the
author’s ethnicity and geographic region via the surname or other
information such as the location of the current workplace, alma
mater, and other available information. Then, we coded their

gender that best matched their name according to Namepedia,
given authors’ geographic and ethnicity information.

As recommended by an anonymous reviewer, we also con-
ducted all of our substantive analyses and hypothesis tests exclud-
ing ambiguous names for which we used Namepedia. Substantive
results and conclusions remained unchanged. Appendix B in the
online supplemental material includes tables summarizing results
using the reduced samples, where sample sizes were reduced by
eight (Study 1: mathematics), 81 (Study 2: genetics), 60 (Study 3:
applied psychology), and 34 (Study 3: mathematical psychology).

Data Analytic Approach

Distribution pitting. To test Hypotheses 1a, 2a, 3a, and 4a,
we used distribution pitting implemented with the R package Dpit,
which is available on the CRAN. Dpit allows pairwise compari-
sons among competing theoretical distributions with respect to the
observed distribution. Appendix C in the online supplemental
material includes the entire R script we used for implementing
distribution pitting. Also, in the interest of full transparency (Agui-
nis, Ramani, & Alabduljader, 2018) and as recommended by
recently published American Psychological Association guidelines
(Appelbaum et al., 2018), we make all of our data files available
on request.

As described in detail by Joo et al. (2017), distribution pitting
involves three decision rules used to ultimately identify the likely
dominant distribution and associated generative mechanism for
each observed distribution. The first decision rule involves gener-
ating distribution pitting statistics. That is, we used Dpit to conduct
21 pairwise fit comparisons of seven theoretical distributions: pure
power law, lognormal, exponential, power law with an exponential
cutoff, normal, Weibull, and Poisson. In turn, for each pairwise
comparison, the R package provides the log likelihood ratio (LR)
and its p value (Aguinis, Gottfredson, & Culpepper, 2013). LR is
calculated by subtracting the log likelihood fit of the second
distribution from that of the first distribution. So, positive LR
values indicate greater empirical support for the first distribution,
whereas negative LR values indicate greater empirical support for
the second distribution. The p value associated with each LR value
was used to rule out whether or not the nonzero LR value is due to
random fluctuations alone (Clauset et al., 2009). Because the null
hypothesis is set to LR � 0, the lower the p value, the less likely
that the LR value is just due to chance. As recommended, we used
a p value cutoff of 0.10 (Clauset et al., 2009). These statistics were
used in the first decision rule to identify theoretical distributions
that can be ruled out by any of the other theoretical distributions.

As suggested by Joo et al. (2017), if the first step and decision
rule did not result in only one surviving distribution, the second
decision rule is to apply the principle of parsimony. If two theo-
retical distributions survived the first step of the distribution pitting
process, we subsequently chose the distribution with fewer param-
eters as being a better match to the observed distribution. Distri-
butions with more parameters have equivalent or superior fit to the
observed distribution; however, they are associated with reduced
parsimony and risks being associated with sampling error and
chance in general that reduce generalizability beyond the specific
sample (Aguinis, Cascio, & Ramani, 2017). Out of the 21 pairwise
comparisons of the theoretical distributions, three comparisons
involve distributions that are nested: (1) pure power law (one
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parameter) is nested within power law with exponential cutoff
(two parameters), (2) exponential distribution (one parameter) is
nested within power law with exponential cutoff (two parameters),
and (3) exponential distribution (one parameter) is nested within
the Weibull distribution (two parameters). So, for example, if the
exponential and Weibull distributions equally fit a sample, we
identified the former as being the better explanation for the ob-
served distribution.

As the third step and decision rule in the distribution pitting
procedure, if the first and second steps did not result in only one
surviving distribution, we again relied on the principle of parsi-
mony—but this time, to rule out one or more of the surviving
distributions such that, among multiple remaining distributions,
the theoretical distribution with a greater range of possible distri-
bution shapes lacks parsimony and, therefore, is considered the
worse explanation. Specifically, over certain parameter values,
three distributions (i.e., lognormal, Poisson, and Weibull) are
“flexible” in that each can look similar to the other four “inflexi-
ble” distributions (i.e., normal, exponential, pure power law, and
power law with exponential cutoff). The converse is not necessar-
ily true. So, if a flexible distribution and an inflexible distribution
remained after using the first and second decision rules, we iden-
tified the flexible distribution (i.e., the theoretical distribution with
a greater range of possible distribution shapes) as having the worse
explanation and, therefore, ruled it out. In short, if one or more of
the three flexible distributions along with one or more of the four
inflexible distributions still remain survivors, the appropriate de-
cision is to rule out the flexible distribution(s) while keeping the
inflexible distribution(s).

Log likelihood values. Following the recommendation by an
anonymous reviewer, we also calculated log likelihood values,
which serve as an index of absolute rather than relative fit—
holding sample size constant (Edwards, 1972; Huzurbazar, 1948).
The calculation of log likelihood values involves two main proce-
dures. First, for each data point in the focal sample, we estimated
the likelihood of observing the data point given the best-fitting
theoretical distribution to the sample (i.e., point-wise likelihood
per data point). Specifically, each point-wise likelihood is the
natural logarithm of the data point’s likelihood and is expressed as
a negative value, such that smaller negative values closer to zero
denote better fit to the theoretical distribution. Second, for the
focal sample, we added all the point-wise log likelihood values
into a single negative value. The resulting value is the log likeli-
hood of observing the sample if the focal theoretical distribution
were correct—such that smaller negative values closer to zero
suggest better fit.

The following equation summarizes the aforementioned de-
scription of how we calculated log likelihood values (Edwards,
1972, p. 33; Huzurbazar, 1948, p. 185):

L 
 �i
l
N ln f(xi |�) (8)

where L � log likelihood of the sample’s fit to the theoretical
distribution; i � data point; N � sample size; ln � natural
logarithm; x � a data point in the sample; 
 � a theoretical
distribution; f(xi | 
) refers to the likelihood of observing the
focal data point given the theoretical distribution at hand; ln f(xi |

) is the negative log likelihood for data point i; and � indicates
that all negative log likelihood values (i.e., point-wise log likeli-
hood values) are added to compute the focal sample’s L.

An important caveat regarding Equation 8 is that it is based on
adding all point-wise likelihood values within the sample. So, even
if two different samples in truth fit equally well to a theoretical
distribution, the log likelihood (L) for the larger sample will have
a larger negative value, which in this example incorrectly indicates
worse fit. This is why, as described earlier, we computed log
likelihood ratios and their p values to compare the relative fit
across theoretical distributions within each sample, and not across
samples.

Fit parameters and descriptive statistics. To test Hypothe-
ses 1b, 2b, 3b, and 4b, we estimated the one or more parameters
associated with the best-fitting theoretical distribution per sample.
Such parameters, for example, include the mean and standard
deviation of a normal distribution or the pure power law’s rate of
decay �. Parameter estimation is necessary to compare differences
in the right-rail heaviness of the productivity distributions across
genders and allows us to test Hypotheses 1b, 2b, 3b, and 4b. In
other words, even if both gender groups share the same theoretical
distribution and its associated generative mechanism, a compari-
son of fit parameters provides information on the relative heavi-
ness of the distributions’ right tails and serves as an effect size
estimate. In particular, for the pure power law, lognormal, expo-
nential, and power law with exponential cutoff distributions, a
heavier right tail suggests that the particular generative mechanism
is stronger for the particular gender group. In contrast, for (poten-
tially) symmetric distributions (i.e., normal, Weibull, and Poisson),
lighter tails suggest that the underlying generative mechanism (i.e.,
homogenization) is stronger for a particular gender group. We
computed fit parameters using functions in the Dpit package,
which are shown in Appendix C in the online supplemental ma-
terial.

We also computed the productivity of top performers (top 10%,
5%, and 1%) relative to the total output of their gender group.
Moreover, we created graphs to perform visual comparisons of the
best-fitting theoretical distributions across genders. This informa-
tion serves to better illustrate the significance of our results to
theory and practice, specifically in terms of gender differences in
the right tails. The code we used for creating these graphs are
provided in Appendix C in the online supplemental material.

Finally, we conducted two additional types of analysis to sup-
plement the descriptive results based on percentages and graphs:
bootstrapping and permutation. These two additional analyses
allowed us to more formally compare the relative productivity of
top performers. Bootstrapping was based on 5,000 replications of
each best-fitting theoretical distribution’s parameter value. We
used the boot or bootstrap package in R to compute two-sided 95%
bootstrapped confidence intervals, with the exception that, for
Study 2, we used 50,000 replications because it is necessary to use
a larger number of replications than the number of data points in
a sample (the values of N for women and men in Study 2 are
14,685 and 30,322, respectively). We used the bias-corrected (i.e.,
balanced) bootstrapping procedure that is available in the boot R
package because it is less susceptible to underestimating the pres-
ence of outliers (e.g., Yam, Fehr, Keng-Highberger, Klotz, &
Reynolds, 2016). Regarding the permutation analysis, we used the
jmuOutlier package in R to check the statistical significance of any
observed underrepresentation (i.e., lower than expected fraction)
of women among the top 1%, 5%, and 10% producers of re-
search—when compared against an expected fraction (�) of
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women in the top 1%, 5%, and 10%. To compute the expected
fraction value, we calculated the fraction of women in the entire
sample used per study (as opposed to the fraction of women in the
top 1%, 5%, or 10% of the sample). As a result, we derived a p
value for each observed (i.e., actual) fraction of females among the
top 1%, 5%, or 10%, where the p value was estimated based on
20,000 simulations and two-sided.

Study 1: Results

Distribution Pitting

Table 1 summarizes distribution pitting results for Study 1. In
support of Hypothesis 3a, results showed that the power law with
exponential cutoff distribution, which belongs to the exponential
tail distribution category, had the best fit with the data for both the
female and male samples. For women, the normal, pure power law,
Poisson, and exponential distributions were disconfirmed via the
first decision rule. The normal distribution had significantly worse
fit than all of the other distributions; the pure power law had
significantly worse fit than the power law with exponential
cutoff, Weibull, and lognormal distributions; the Poisson dis-
tribution had worse fit than all other distributions except for the
normal distribution; and the exponential distribution had worse
fit than the power law with exponential cutoff and Weibull
distributions. Thus, the power law with exponential cutoff,
Weibull, and lognormal distributions remained after imple-
menting the first decision rule. The second decision rule (i.e.,
that among nested distributions, the distribution with more
parameters is ruled out) did not further rule out any of the
remaining distributions, as none of the remaining distributions
(i.e., power law with exponential cutoff, Weibull, and lognor-
mal) were nested within each other. Finally, we used the third

decision rule to rule out the Weibull and lognormal distribu-
tions because these are flexible distributions as opposed to the
power law with exponential cutoff distribution, which is “in-
flexible” and thus more parsimonious.

For men, all but the power law with exponential cutoff and Weibull
distributions remained after implementing the first decision rule. The
normal distribution had significantly worse fit than the other six
distributions; the pure power law distribution had worse fit than the
power law with exponential cutoff, Weibull, and lognormal distribu-
tions; the lognormal distribution had worse fit than the Weibull
distribution; the Poisson distribution had worse fit than all other
distributions except for the normal distribution; and the exponential
distribution had worse fit than the power law with exponential cutoff,
Weibull, and lognormal distributions. The second decision rule did
not further rule out either of the remaining distributions, as the power
law with exponential cutoff and Weibull distributions are not nested
within one another. Finally, the third decision rule was used to
disconfirm the Weibull distribution (flexible).

Log Likelihood Values

As noted in the Method section, we also computed absolute fit (i.e.,
log likelihood) values based on Equation 8. Results are included in the
Appendix. Please recall the caveat mentioned earlier that these values
are influenced by sample size. So, the Appendix shows that, overall,
larger samples seem to have worse fit (i.e., larger negative values for
log likelihood)—which is not necessarily true. So, an appropriate use
of log likelihood values in terms of how well a theoretical distribution
fits a sample involves keeping sample size constant. As shown in the
Appendix, for each of the two genders (i.e., men and women) in the
field of mathematics, the power law with an exponential cutoff has a
smaller negative value of log likelihood (i.e., has better fit) than that
for each of the other distributions.

Table 1
Distribution Pitting Results for Research Productivity of Female and Male Researchers in Study 1 (Mathematics)

Gender N

Norm vs. PL Norm vs. Cut Norm vs. Weib Norm vs. LogN Norm vs. Exp Norm vs. Pois
PL vs. Cut PL vs. Weib PL vs. LogN PL vs. Exp PL vs. Pois

Cut vs. Weib Cut vs. LogN Cut vs. Exp Cut vs. Pois
Weib vs. LogN Weib vs. Exp Weib vs. Pois

LogN vs. Exp LogN vs. Pois
Exp vs. Pois

Women 360 –5.69 (0) –6.10 (0) –6.14 (0) –6.09 (0) –6.77 (0) –7.71 (0)
�3.46 (.01) �1.66 (.10) �1.55 (.12) .63 (.53) 1.73 (.08)

.54 (.59) 1.08 (.28) 1.76 (.08) 2.42 (.02)
.03 (.97) 1.80 (.07) 2.40 (.02)

1.67 (.10) 2.40 (.02)
2.87 (0)

Men 3,493 �16.55 (0) �18.28 (0) �18.18 (0) �18.09 (0) �20.25 (0) �26.48 (0)
�83.30 (0) �7.72 (0) �7.76 (0) 1.49 (.14) 6.53 (0)

.31 (.75) .88 (.38) 6.16 (0) 8.46 (0)
1.71 (.09) 6.17 (0) 8.46 (0)

5.88 (0) 8.34 (0)
9.21 (0)

Note. N � sample size; LR � loglikelihood ratio. Distribution pitting results are presented in the final six columns of the table. For each instance of
distribution pitting, the LR value is presented followed by its p value in parentheses. Distribution names are abbreviated as follows: Norm � normal; PL �
pure power law; Cut � power law with exponential cutoff; Weib � Weibull; LogN � lognormal; Exp � exponential; Pois � Poisson. Distribution pitting
titles are presented such that the first distribution is pitted against the second distribution (e.g., Norm vs. PL � normal distribution versus pure power law).
Positive LR � superior fit for first distribution as listed in the distribution pitting title. Negative LR � superior fit for second distribution as listed in the
distribution pitting title.
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Fit Parameters and Descriptive Statistics

To test Hypotheses 1b, 2b, 3b, and 4b, we computed the pure
power law’s parameter (�) and exponential distribution’s param-
eter (�) using Dpit. Both parameters were larger for women (i.e.,
lighter tails). For women, the � and � parameters were � � 2.94
(bootstrapped 95% confidence interval from 2.74 to 3.16) and � �
0.57 (bootstrapped 95% confidence interval from 0.54 to 0.59),
respectively. For men, the � and � parameters were � � 2.39
(bootstrapped 95% confidence interval from 2.35 to 2.44) and � �
0.47 (bootstrapped 95% confidence interval from 0.46 to 0.48),
respectively. These parameter estimates offer support for Hypothesis
3b in that, although both genders share the same likely dominant
generative mechanism of incremental differentiation, the distribution
for men has a heavier right tail such that there is a gender productivity
gap in favor of men. Indeed, regardless of � or �, there was no overlap
between the bootstrapped confidence interval for female researchers
and that for male researchers.

Figure 1 depicts histograms and kernel density plots of the
research productivity of female and male researchers in Study 1.
For women, the total number of publications ranged from one to
seven. Additionally, the top 10% of female performers published
within the range of two to seven articles, the top 5% published
within the range of three to seven articles, and the top 1% pub-

lished within the range of five to seven articles. For men, the
number of publications ranged from one to 20. The top 10% of
male performers published within the range of three to 20 articles,
the top 5% published within the range of four to 20 articles, and the
top 1% published within the range of eight to 20 articles. This
means that each of the top 1% of male researchers, individually,
outperformed each of the female researchers in terms of number of
publications. In addition, results showed that among all 3,853 math-
ematics researchers, the top 1% of performers is composed entirely of
male researchers, each with eight or more top-tier journal articles.
Finally, permutation analyses showed that the actual fraction of
women was significantly lower than the expected fraction of women
among the top 1% (actual fraction � 0, expected fraction � 0.09, p 

.01), top 5% (actual fraction � 0.05, expected fraction � 0.09, p 

.01), and top 10% of all producers of research (actual fraction � 0.06,
expected fraction � 0.09, p 
 .05).

Study 2: Method

Sample

We examined the productivity of all researchers in the field of
genetics who have published at least one article in one of the five

Figure 1. Histograms and kernel density plots of the productivity of 3,853 researchers in Study 1
(mathematics).
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most cited genetics journals from January 2006 to December 2015.
In contrast to mathematics, the field of genetics has one of the
greatest concentrations of women across STEM fields (National
Science Foundation, 2016). Study 2 thus complemented Study 1 in
that it involved a STEM field but one that may involve different
gender dynamics and processes. The sample size for Study 2 was
N � 45,007 unique researchers, of whom 14,685 (32.6%) were
women.

Journal Selection Criteria

We identified the five most influential journals using the same
process as in Study 1 (by assessing mean impact factors from 2011
to 2015). Study 2 included five journals because genetics journals
publish many more articles compared with the field of mathemat-
ics. The top five journals in the field of genetics were as follows:
Nature Reviews Genetics, Nature Genetics, Annual Review of
Genetics, Trends in Ecology & Evolution, and Genome Research.
The total number of articles published from January 2006 to
December 2015 was 7,746, which is comparable to the number of
articles published in applied psychology journals (Kruschke et al.,
2012).

Measures

We used the same procedures for gathering information on the
number of articles published by each researcher in top-tier journals
as in Study 1. Similarly, we followed the same procedures regard-
ing the measurement of gender for each author.

Data Analytic Approach

The data analytic approach was identical to Study 1. In other
words, it involved distribution pitting followed by the calculation

of log likelihood values, fit parameters, descriptive statistics, boot-
strapping, and permutation.

Study 2: Results

Distribution Pitting

Table 2 summarizes the distribution pitting results for Study 2.
In support of Hypothesis 3a, results showed that, for both gender
groups, the power law with exponential cutoff distribution had the
best fit with the data. For women, the normal, pure power law,
Poisson, Weibull, and exponential distributions were disconfirmed
via the first decision rule. The normal distribution had significantly
worse fit than all of the other distributions; the pure power law had
worse fit than the power law with exponential cutoff and lognor-
mal distributions; the Poisson distribution had worse fit than all of
the other distributions except for the normal distribution; the
Weibull distribution had worse fit than the lognormal, pure power
law, and power law with exponential cutoff distributions; and the
exponential distribution had worse fit than the pure power law,
power law with exponential cutoff, lognormal, and Weibull distri-
butions. Thus, the power law with exponential cutoff and lognor-
mal distributions remained after implementing the first decision
rule. The second decision rule did not further rule out any of the
remaining distributions, as the remaining distributions were not
nested within one another. Finally, the third decision rule was used
to rule out the lognormal distribution (i.e., flexible).

For men, the normal, pure power law, Poisson, Weibull, and
exponential distributions were disconfirmed via the first decision
rule. The normal distribution had significantly worse fit than all of
the other distributions; the pure power law had significantly worse
fit than the power law with exponential cutoff and lognormal
distributions; the Poisson distribution had worse fit than all of the

Table 2
Distribution Pitting Results for Research Productivity of Female and Male Researchers in Study 2 (Genetics)

Gender N

Norm vs. PL Norm vs. Cut Norm vs. Weib Norm vs. LogN Norm vs. Exp Norm vs. Pois
PL vs. Cut PL vs. Weib PL vs. LogN PL vs. Exp PL vs. Pois

Cut vs. Weib Cut vs. LogN Cut vs. Exp Cut vs. Pois
Weib vs. LogN Weib vs. Exp Weib vs. Pois

LogN vs. Exp LogN vs. Pois
Exp vs. Pois

Women 14,685 –17.69 (0) –17.78 (0) –17.81 (0) –17.76 (0) –17.97 (0) –21.97 (0)
�23.78 (0) 5.25 (0) �4.29 (0) 13.60 (0) 11.41 (0)

7.88 (0) �.41 (.68) 14.11 (0) 11.50 (0)
�7.89 (0) 14.40 (0) 11.52 (0)

14.07 (0) 11.49 (0)
10.66 (0)

Men 30,322 �40.29 (0) �40.83 (0) �41.17 (0) �40.78 (0) �43.59 (0) �43.64 (0)
�126.91 (0) 3.33 (0) �9.33 (0) 22.91 (0) 21.60 (0)

8.37 (0) �.38 (.70) 24.62 (0) 21.93 (0)
�10.36 (0) 26.02 (0) 22.11 (0)

24.68 (0) 21.93 (0)
20.98 (0)

Note. N � sample size; LR � loglikelihood ratio. Distribution pitting results are presented in the final six columns of the table. For each instance of
distribution pitting, the LR value is presented followed by its p value in parentheses. Distribution names are abbreviated as follows: Norm � normal; PL �
pure power law; Cut � power law with exponential cutoff; Weib � Weibull; LogN � lognormal; Exp � exponential; Pois � Poisson. Distribution pitting
titles are presented such that the first distribution is pitted against the second distribution (e.g., Norm vs. PL � normal distribution versus pure power law).
Positive LR � superior fit for first distribution as listed in the distribution pitting title. Negative LR � superior fit for second distribution as listed in the
distribution pitting title.
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other distributions except for the normal distribution; the Weibull
distribution had worse fit than the lognormal, pure power law, and
power law with exponential cutoff distributions; and the exponen-
tial distribution had worse fit than the pure power law, power law
with exponential cutoff, lognormal, and Weibull distributions.
Thus, the power law with exponential cutoff and lognormal dis-
tributions remained after implementing the first decision rule. The
second decision rule did not further rule out either of the remaining
distributions. The third decision rule was used to rule out the
lognormal distribution (flexible).

Log Likelihood Values

As with Study 1, we computed absolute fit (i.e., log likelihood)
values based on Equation 8. These results are included in the
Appendix. For each of the two genders (i.e., men and women) in
the field of genetics, the power law with an exponential cutoff has
a smaller negative value of log likelihood (i.e., has better fit) than
that for each of the other distributions.

Fit Parameters and Descriptive Statistics

As with Study 1, the power law with exponential cutoff distri-
bution was the best fitting one for both gender groups. To assess
the heaviness of the distributions’ right tails, we estimated the �
and � parameters (i.e., rates of decay) for each gender group. Both

parameters were larger for women (i.e., lighter tails). For women,
the � and � parameters were � � 2.43 (bootstrapped 95% confi-
dence interval from 2.41 to 2.46) and � � 0.44 (bootstrapped 95%
confidence interval from 0.43 to 0.45), respectively. For men, the
� and � parameters were � � 2.30 (bootstrapped 95% confidence
interval from 2.28 to 2.31) and � � 0.40 (bootstrapped 95%
confidence interval from 0.40 to 0.41), respectively. Regardless of
� or �, there was no overlap between the bootstrapped confidence
interval for female researchers and that for male researchers. Thus,
in support of Hypothesis 3b, these parameter estimates show that,
although both genders share the same likely dominant generative
mechanism of incremental differentiation, the right tail is lighter
for women than for men.

Figure 2 shows histograms and kernel density plots of the
research productivity of female versus male researchers in Study 2.
Women exceeded men in terms of their total range of publications
(i.e., one to 123 for women vs. one to 102 for men). The top 10%
of female researchers published articles within the range of three to
123 articles, the top 5% within the range of five to 123 articles, and
the top 1% within the range of 12 to 123 articles. The top 10% of
male researchers published within the range of four to 102 articles,
the top 5% within the range of six to 102 articles, and the top 1%
within the range of 15 to 102 articles. However, among the top 1%
of all 45,007 researchers in Study 2, 26.2% were women. Given
that women comprised 32.6% of the total sample of genetics

Figure 2. Histograms and kernel density plots of the productivity of 45,007 researchers in Study 2 (genetics).
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researchers, the fact that women make up 26.2% of the top 1%
genetics researchers in our sample shows that women are under-
represented at the upper tail of the combined productivity distri-
bution. Finally, permutation analyses showed that the actual frac-
tion of women was significantly lower than the expected fraction
of women among the top 1% (actual fraction � 0.26, expected
fraction � 0.33, p 
 .01), top 5% (actual fraction � 0.28, expected
fraction � 0.33, p 
 .01), and top 10% of all producers of research
(actual fraction � 0.31, expected fraction � 0.33, p 
 .01).

Study 3: Method

Sample

We examined the productivity distributions of male and female
researchers in two psychology subfields: applied psychology and
mathematical psychology. We chose applied psychology because
of its relevance for a JAP readership, and we chose mathematical
psychology because it is more closely related to STEM. Regarding
the sample sizes for Study 3, there were 4,081 applied psychology
researchers, of whom 1,595 (39.1%) were women. In addition,
there were 6,337 mathematical psychology researchers, of whom
2,177 (34.4%) were women. The relative representation of women
in these two non-STEM fields is similar to that in genetics as
described in Study 2 (i.e., 32.6%) and clearly larger than that in
mathematics as described in Study 1 (i.e., 9.3%).

Journal Selection Criteria

We identified the five most influential journals in each of the
two psychology subfields using the same process as in Studies 1
and 2 (i.e., based on the mean impact factor from 2011 to 2015).
In applied psychology, the top five journals are the following:

Journal of Management, Journal of Applied Psychology, Organi-
zational Research Methods, Personnel Psychology, and Journal of
Organizational Behavior. In mathematical psychology, the top
five journals are the following: Psychonomic Bulletin & Review,
Behavior Research Methods, British Journal of Mathematical &
Statistical Psychology, Psychometrika, and Journal of Mathemat-
ical Psychology. The total number of articles published in the top
five journals from January 2006 to December 2015 was 2,807 for
applied psychology and 3,796 for mathematical psychology.

Measures and Data Analytic Approach

We used the same procedures for gathering information on the
number of articles published by each researcher in top-tier journals
as in Studies 1 and 2. Similarly, we followed the same procedures
regarding the measurement of gender for each author. We also
used the same data analytic approach as in Studies 1 and 2.

Study 3: Results

Distribution Pitting

Tables 3 and 4 summarize the distribution pitting results for
Study 3. Consistent with the results of Studies 1 and 2, in applied
psychology and mathematical psychology and for both gender
groups, the power law with exponential cutoff distribution had the
best fit with the data. First, for women in applied psychology, the
normal, pure power law, Poisson, and exponential distributions
were disconfirmed via the first decision rule. The normal distri-
bution had significantly worse fit than all of the other distributions;
the pure power law had significantly worse fit than the power law
with exponential cutoff distribution; the Poisson distribution had
significantly worse fit than all of the other distributions except

Table 3
Distribution Pitting Results for Research Productivity of Female and Male Researchers in Study 3 (Applied Psychology)

Norm vs. PL Norm vs. Cut Norm vs. Weib Norm vs. LogN Norm vs. Exp Norm vs. Pois
PL vs. Cut PL vs. Weib PL vs. LogN PL vs. Exp PL vs. Pois

Cut vs. Weib Cut vs. LogN Cut vs. Exp Cut vs. Pois
Weib vs. LogN Weib vs. Exp Weib vs. Pois

LogN vs. Exp LogN vs. Pois
Gender N Exp vs. Pois

Women 1,595 –15.33 (0) –16.25 (0) –16.35 (0) –16.17 (0) –18.86 (0) –25.82 (0)
�20.01 (0) �17.23 (0) �4.01 (0) 4.22 (0) 6.60 (0)

1.58 (.11) 2.20 (.03) 6.12 (0) 7.25 (0)
�.55 (.58) 6.37 (0) 7.31 (0)

6.01 (0) 7.22 (0)
7.54 (0)

Men 2,486 20.67 (0) �21.89 (0) �22.07 (0) �21.69 (0) �25.62 (0) �14.16 (0)
�40.21 (0) �4.27 (0) �5.78 (0) 7.40 (0) 9.87 (0)

3.45 (0) 4.24 (0) 9.74 (0) 10.38 (0)
�1.49 (.14) 10.03 (0) 10.47 (0)

9.45 (0) 10.21 (0)
10.30 (0)

Note. N � sample size; LR � loglikelihood ratio. Distribution pitting results are presented in the final six columns of the table. For each instance of
distribution pitting, the LR value is presented followed by its p value in parentheses. Distribution names are abbreviated as follows: Norm � normal; PL �
pure power law; Cut � power law with exponential cutoff; Weib � Weibull; LogN � lognormal; Exp � exponential; Pois � Poisson. Distribution pitting
titles are presented such that the first distribution is pitted against the second distribution (e.g., Norm vs. PL � normal distribution versus pure power law).
Positive LR � superior fit for first distribution as listed in the distribution pitting title. Negative LR � superior fit for second distribution as listed in the
distribution pitting title.
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normal; and the exponential distribution had significantly worse fit
than the power law with exponential cutoff and Weibull distribu-
tions. Thus, the power law with exponential cutoff, lognormal, and
Weibull distributions remained after implementing the first deci-
sion rule. The second decision rule did not further rule out any of
the remaining distributions, as the remaining distributions are not
nested within one another. Finally, the third decision rule was used
to rule out the lognormal and Weibull distributions (i.e., flexible).

For men in applied psychology, the normal, pure power law,
Weibull, Poisson, and exponential distributions were disconfirmed
via the first decision rule. The normal distribution had significantly
worse fit than all of the other distributions; the pure power law had
significantly worse fit than the power law with exponential cutoff,
Weibull, and lognormal distributions; the Weibull distribution had
significantly worse fit than the lognormal distribution; the Poisson
distribution had significantly worse fit than all of the other distri-
butions except normal; and the exponential distribution had sig-
nificantly worse fit than the power law with exponential cutoff,
Weibull, and lognormal distributions. Thus, the power law with
exponential cutoff and lognormal distributions remained after im-
plementing the first decision rule. The second decision rule did not
further rule out any of the remaining distributions because they are
not nested within one another. Finally, the third decision rule was
used to rule out the lognormal distribution (i.e., flexible).

Next, for both men and women in mathematical psychology, the
normal, pure power law, Weibull, Poisson, and exponential distri-
butions were disconfirmed via the first decision rule. The normal
distribution had significantly worse fit than all of the other distri-
butions; the pure power law had significantly worse fit than the
power law with exponential cutoff and lognormal distributions; the
Weibull distribution had significantly worse fit than the pure
power law, power law with exponential cutoff, and lognormal
distributions; the Poisson distribution had significantly worse fit

than all of the other distributions except normal; and the exponen-
tial distribution had significantly worse fit than the pure power
law, power law with exponential cutoff, Weibull, and lognormal
distributions. Thus, the power law with exponential cutoff and
lognormal distributions remained after implementing the first de-
cision rule. The second decision rule did not further rule out any of
the remaining distributions because they are not nested within one
another. Finally, the third decision rule was used to rule out the
lognormal distribution (i.e., flexible).

Log Likelihood Values

As with Studies 1 and 2, we computed absolute fit (i.e., log
likelihood) values based on Equation 8. These results are included
in the Appendix. For each of the two non-STEM fields (i.e.,
applied psychology and mathematical psychology) and for each of
the two genders (i.e., men and women), the power law with an
exponential cutoff has a smaller negative value of log likelihood
(i.e., has better fit) than that for each of the other distributions.

Fit Parameters and Descriptive Statistics

As with Studies 1 and 2, the power law with exponential cutoff
distribution was the best fitting one for both gender groups. To
assess the heaviness of the distributions’ right tails, we estimated
the � and � parameters (i.e., rates of decay) for each gender group.
In both the applied and mathematical psychology subfields, the �
and � parameters were greater for women (i.e., lighter tails). For
women in applied psychology, the � and � parameters were � �
2.40 (bootstrapped 95% confidence interval from 2.33 to 2.47) and
� � 0.46 (bootstrapped 95% confidence interval from 0.44 to
0.47), respectively. For men in applied psychology, the � and �
parameters were � � 2.14 (bootstrapped 95% confidence interval

Table 4
Distribution Pitting Results for Research Productivity of Female and Male Researchers in Study 3 (Mathematical Psychology)

Norm vs. PL Norm vs. Cut Norm vs. Weib Norm vs. LogN Norm vs. Exp Norm vs. Pois
PL vs. Cut PL vs. Weib PL vs. LogN PL vs. Exp PL vs. Pois

Cut vs. Weib Cut vs. LogN Cut vs. Exp Cut vs. Pois
Weib vs. LogN Weib vs. Exp Weib vs. Pois

LogN vs. Exp LogN vs. Pois
Gender N Exp vs. Pois

Women 2,177 –6.90 (0) –7.03 (0) –7.04 (0) –7.00 (0) –7.29 (0) –7.77 (0)
�7.69 (0) �.78 (.44) �2.43 (.02) 3.34 (0) 4.07 (0)

1.39 (.16) .31 (.75) 4.15 (0) 4.43 (0)
�1.19 (.23) 4.29 (0) 4.43 (0)

4.06 (0) 4.38 (0)
4.54 (0)

Men 4,160 �20.65 (0) �21.38 (0) �21.53 (0) �21.26 (0) �23.59 (0) �29.73 (0)
�35.58 (0) �2.34 (.02) �5.45 (0) 8.21 (0) 10.35 (0)

3.27 (0) 3.49 (0) 10.22 (0) 10.96 (0)
�2.74 (.01) 10.85 (0) 11.06 (0)

10.03 (0) 10.89 (0)
10.99 (0)

Note. N � sample size; LR � loglikelihood ratio. Distribution pitting results are presented in the final six columns of the table. For each instance of
distribution pitting, the LR value is presented followed by its p value in parentheses. Distribution names are abbreviated as follows: Norm � normal; PL �
pure power law; Cut � power law with exponential cutoff; Weib � Weibull; LogN � lognormal; Exp � exponential; Pois � Poisson. Distribution pitting
titles are presented such that the first distribution is pitted against the second distribution (e.g., Norm vs. PL � normal distribution versus pure power law).
Positive LR � superior fit for first distribution as listed in the distribution pitting title. Negative LR � superior fit for second distribution as listed in the
distribution pitting title.
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from 2.10 to 2.18) and � � 0.37 (bootstrapped 95% confidence
interval from 0.36 to 0.39), respectively. Next, for women in
mathematical psychology, the � and � parameters were � � 2.95
(bootstrapped 95% confidence interval from 2.86 to 3.04) and � �
0.56 (bootstrapped 95% confidence interval from 0.55 to 0.57),
respectively. For men in mathematical psychology, the � and �
parameters were � � 2.41 (bootstrapped 95% confidence interval
from 2.37 to 2.45) and � � 0.45 (bootstrapped 95% confidence
interval from 0.44 to 0.47), respectively. For each of the two
non-STEM fields, regardless of � or �, there was no overlap
between the bootstrapped confidence interval for female research-
ers and that for male researchers. These parameter estimates are
consistent with the results of Studies 1 and 2 in that, while both
genders share the same likely dominant generative mechanism of
incremental differentiation, the right tail is lighter for women than
for men.

Figures 3 and 4 depict histograms and kernel density plots of the
research productivity of female versus male researchers in Study 3.
In both fields, men exceeded women in terms of their total range
of publications: one to 19 for women versus one to 35 for men
in applied psychology, and one to 21 for women versus one to
32 for men in mathematical psychology. In applied psychology,
the top 10% of female researchers published articles within the
range of three to 19, the top 5% within the range of five to 19,

and the top 1% within the range of 10 to 19. The top 10% of
male researchers published within the range of five to 35
articles, the top 5% within the range of seven to 35 articles, and
the top 1% within the range of 16 to 35 articles. In addition,
among the top 1% of all 4,081 researchers in applied psychol-
ogy, only 14.6% were women, although women made up 39%
of the combined sample. Permutation analyses showed that the
actual fraction of women was significantly lower than the
expected fraction of women among the top 1% (actual frac-
tion � 0.15, expected fraction � 0.39, p 
 .01), top 5% (actual
fraction � 0.31, expected fraction � 0.39, p 
 .05), and top
10% of all producers of research (actual fraction � 0.33,
expected fraction � 0.39, p 
 .01).

Next, in mathematical psychology, the top 10% of female re-
searchers published articles within the range of two to 21, the top
5% within the range of three to 21, and the top 1% within the range
of six to 21. The top 10% of male researchers published within the
range of three to 32 articles, the top 5% within the range of five to
32 articles, and the top 1% within the range of 10 to 32 articles. In
addition, among the top 1% of all 6,337 researchers in mathemat-
ical psychology, only 6.3% were women, although women made
up 34% of the combined sample. Permutation analyses showed
that the actual fraction of women was significantly lower than the
expected fraction of women among the top 1% (actual fraction �

Figure 3. Histograms and kernel density plots of the productivity of 4,081 researchers in Study 3 (applied
psychology).
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0.06, expected fraction � 0.34, p 
 .01), top 5% (actual fraction �
0.21, expected fraction � 0.34, p 
 .01), and top 10% of all
producers of research (actual fraction � 0.24, expected fraction �
0.34, p 
 .01).

General Discussion

Regarding Hypotheses 1a, 2a, 3a, and 4a, in Study 1 (mathe-
matics), Study 2 (genetics), and Study 3 (applied psychology and
mathematical psychology), we found that the power law with an
exponential cutoff distribution best fits the productivity distribu-
tions of both male and female researchers. Given that incremental
differentiation is the generative mechanism associated with this
particular distribution (i.e., power law with exponential cutoff),
findings suggest that, for both genders, individual variation in
cumulative productivity is predominantly driven by differences in
accumulation rates (i.e., average amount of a result produced per
time period).

Regarding Hypotheses 1b, 2b, 3b, and 4b, we found significant
gender-based differences in the heaviness of the distributions’
right tails (i.e., lighter for women). Moreover, we found that the
underrepresentation of women is more and more extreme as we
consider more elite ranges of performance (i.e., top 10%, 5%, and
1% of performers). We include a summary of results regarding the
underrepresentation of women in Table 5. For example, consider-

ing the top 1% of researchers, there was not even one woman in
mathematics, only 26.2% were women in genetics, only 14.6% in
applied psychology, and only 6.3% in mathematical psychology.
This pattern of female underrepresentation among the top 1% of
researchers stands in contrast to the overall female representation
in our mathematics (9.3%), genetics (32.6%), applied psychology
(39.1%), and mathematical psychology (34.4%) samples.

Implications for Theory

First, results help us understand the likely generative mechanism
leading to the emergence of star performers in STEM and other
scientific fields. To identify the likely generative mechanism, we
adopted an epistemological approach based on falsification, which
allowed us to rule out mechanisms that did not fit the data as well.
Results were consistent across all studies and revealed that the
generative mechanism of incremental differentiation is likely dom-
inant for both gender groups. Because the incremental differenti-
ation mechanism means that individuals’ output increases at an
approximately linear rate based on their accumulation rates, we
conclude that star researchers vary in their cumulative productivity
largely because of individual differences in accumulation rates,
which allow some individuals to enjoy greater output increments
than others. Note that because distribution pitting is a falsification-
based approach, we conclude that incremental differentiation is

Figure 4. Histograms and kernel density plots of the productivity of 6,337 researchers in Study 3 (mathemat-
ical psychology).
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dominant over the other generative mechanisms with respect to the
observed output distributions. However, this does not mean that
other mechanisms are completely irrelevant. It is possible that
some researchers experience, to a certain extent, the output shocks
of self-organized criticality, output loops of proportionate differ-
entiation, and output homogenization processes that produce (po-
tentially) symmetric distributions. Nonetheless, incremental differ-
entiation consistently emerged as dominant over the other
mechanisms. In sum, with regard to the overriding putative cause
of the emergence of star researchers, our results provide stronger
evidence for explanations based on incremental differentiation and
associated output increments over explanations based on output
shocks, output loops, or output homogenization.

Second, our results regarding the likely dominance of incremen-
tal differentiation provide a building block for further theory
development about why individuals vary in their total outputs and
how star performers emerge. The incremental differentiation
mechanism suggests that researchers differ substantially in their
accumulation rates on a set of major variables or components that,
together, have a more-or-less linear effect on total research pro-
ductivity. In other words, researchers with higher accumulation
rates on input components such as social capital, scientific knowl-
edge, work hours, and funding may experience larger increments
in total research productivity—analogous to the way workers with
higher labor productivity enjoy larger increments in accumulated
wages. For instance, holding all other factors constant, individuals
who accumulate network ties at a greater rate than others may
experience larger increments in future productivity, because their
larger networks would enable a greater influx of useful research-
related advice, resources, and other forms of social capital. In
short, each unit of increase in one’s accumulation rate would be
followed by a concordant increase in total outputs, thus allowing
incremental differentiation to occur.

Third, because results regarding the likely dominance of the
power law with exponential cutoff were so consistent in mathe-
matics, genetics, applied psychology, and mathematical psychol-
ogy, our studies contribute to the current and important debate in
applied psychology and related fields about the need to produce
cumulative knowledge (Kepes & McDaniel, 2013). Moreover, our
results regarding the likely dominance of the power law with an
exponential cutoff and its associated mechanism of incremental
differentiation are also consistent with those of Joo et al. (2017)
based on star performers in a variety of industries, occupations,
and jobs including sports, entertainment, politics, and manufactur-
ing. Such consistency across different samples and also consis-
tency with past research are particularly important in a domain that
is highly contentious such as gender issues and with important
implications for organizational practices, policy making, and so-
ciety in general. As such, our article follows the advice by Cortina,
Aguinis, and DeShon (2017) who noted that “our top journals must
encourage and publish high-quality constructive replications” (p.
283). In short, we see the consistency in results as an important
contribution to the need to produce cumulative knowledge and,
more specifically, such consistency provides further evidence of
the pervasiveness of incremental differentiation in the production
of star performers across various contexts.

Fourth, our findings provide insights into the likely predominant
cause of the observed gender productivity gaps among stars in
STEM and other scientific fields. To do so, we first integratedT
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conceptualizations regarding the reasons for a gender productivity
gap from applied psychology and other social sciences with the
literature from the natural sciences regarding distribution shapes
and their generative mechanisms. The existence of a gender pro-
ductivity gap under the incremental differentiation mechanism is
most strongly aligned with the gender discrimination explanation
for the gender productivity gap. Given such, our results suggest
that incremental differentiation occurs to a greater degree among
men, because certain forms of discrimination may disproportion-
ately constrain the output increments resulting from women’s
accumulation rates. For example, two researchers, John and Sally,
may be nearly identical in terms of their accumulation rates, and
they may produce high quality articles at similar rates. However,
John may experience greater increments in his total publications
compared with Sally because of gender biases in peer reviews (in
favor of men). Similarly, John and Sally may accumulate network
ties with other researchers at equivalent rates, yet John may accrue
greater benefits (i.e., more publications) from his network because
of various gender biases among collaborators and mentors (e.g.,
tendency to overvalue the work of star men over that of star
women). Hence, for each unit of increase in accumulation rate,
John is likely to experience greater increments in total productivity
compared with Sally. Extending this logic to large groups of
individuals, the same distribution of accumulation rates would lead
to greater incremental differentiation and thus a more heavily
right-tailed productivity distribution for men compared with
women. The effects of gender discrimination in analogous to a
situation where, between two groups of individuals with similar
labor productivity distributions, one group is able to accumulate
wages at a higher rate than the other because of systematic biases
in salaries (Martell, Lane, & Emrich, 1996).

Fifth, our results demonstrate that the gender productivity gap
among stars may be prevalent in scientific domains that do not
have the reputation of being traditionally masculine, such as ap-
plied psychology. To our surprise, in Study 3, we found a sub-
stantial productivity gap favoring men in applied psychology and
mathematical psychology. In fact, as shown in Table 5, there is
more underrepresentation of female stars in applied psychology
than in genetics. Consider the results for the top 1% of performers
in each discipline we examined. In genetics, because 32.6% of the
entire sample was female, we also expected 32.6% of the top 1%
of genetics researchers to be women. However, we found that
women make up only 26.2% of the top 1% of genetics researchers.
In applied psychology, the underrepresentation of women at the
top of the productivity distribution was even greater. We expected
39.1% of the top 1% of applied psychology researchers to be
women, but we found that women make up only 14.6% of that
group. In retrospect, perhaps the underrepresentation of female
stars in both STEM and non-STEM fields is not surprising in light
of past research findings. For example, consider the fact that
Kozlowski, Chen, and Salas (2017) reviewed articles published in
the first 100 years of JAP and concluded that “research published
in the journal is increasingly team based and the size of the author
teams is increasing over time. This indicates that the quaint notion
of the sole investigator/author has long since passed in time” (p.
243). Given the increased number of coauthored articles, the
Matilda effect to which we referred earlier (i.e., reviewers and
colleagues often undervalue the quality of female scientists’ re-
search outputs and are less likely to show collaboration interest

toward them) may be relevant in applied psychology as well.
These results are also consistent with those of a recent study
involving 511 management professors, showing that women were
less likely to receive named professorships, even when controlling
for publication records and citations (Treviño, Gomez-Mejia,
Balkin, & Mixon, 2018). In sum, our results suggest that it is likely
that similar gender discrimination processes and “masculine-
gendered environments” (Treviño et al., 2018) affect the produc-
tion of star performers not only in STEM fields but also in
non-STEM fields—including those that include a greater overall
representation of women in general such as applied psychology.

Finally, stars are highly visible, are sought after, and can play a
powerful role in shaping people’s attitudes and organizational
policies (Aguinis & Bradley, 2015; Call, Nyberg, & Thatcher,
2015). So, our results about the existence of large gender imbal-
ances specifically among stars can explain a chain of consequences
that could ripple throughout the entire domain. In particular, the
existence of large gender productivity gaps among stars may
partially explain why the overall gender representation gap re-
mains more persistent in certain fields over others. For example,
the disproportionate dearth of female stars in fields such as math-
ematics may, in turn, substantially contribute to negative stereo-
types about women’s math abilities in general, stymie the influx of
women into the field, and ultimately perpetuate gender gaps in
terms of overall representation and productivity in the field. In
comparison, the relatively greater presence of female stars in fields
such as genetics may catalyze organizational efforts to mitigate
gender biases, stimulate a greater influx of women into the field,
and contribute to further improvements in women’s overall repre-
sentation and productivity in the field. Thus, we suggest that future
theory development focus on not only better understanding the
underlying causes of women’s underrepresentation among stars,
but also the broader consequences of such underrepresentation.

Implications for Practice

General implications. First, our findings suggest that incre-
mental differentiation is more constrained among women stars
than among men stars. Female star researchers may accumulate
productivity components at similar rates as their male colleagues
but experience smaller increments in productivity because of a
myriad of gender biases. According to our results, women stars
may need to overaccumulate or “do more” (e.g., acquire more
knowledge, build more relationships, put in more research hours)
to achieve the same level of increase in outputs as their male
counterparts. The present studies’ replication of the likely domi-
nance of incremental differentiation is especially important given
current discussions about the science-practice divide, the need for
applied psychology to provide reproducible research findings to
narrow the divide, and the need for applied psychology to have
greater impact on organizational practices and interventions (Cas-
cio & Aguinis, 2008; McHenry, 2007).

Second, our results point to the need for organizations to spe-
cifically address female underrepresentation among star perform-
ers. In academic domains, the difference between publishing one
versus two articles in a top-tier journal can be the decisive factor
with respect to whether one receives a particular grant, promotion,
and other important rewards (e.g., summer funding, teaching re-
duction). As such, even a seemingly small gender productivity gap
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may entail large consequences for individual researchers, espe-
cially in fields such as mathematics where researchers publish at
relatively lower rates. Moreover, a gender productivity gap among
stars implies a chain of consequences with trickle-down effects
onto other performers. As mentioned previously, many factors
have been shown to contribute to the general underrepresentation
of women in STEM and other scientific fields, including biological
differences, gender discrimination, and different career and life-
style choices. But, our analyses into the dominant mechanism
through which researchers differentiate their productivity suggest
that, when pertaining specifically to the disproportionate gender
productivity gap among stars, gender discrimination likely plays
the strongest role. Given how influential star performers can be, an
implication of our results is that organizations may wish to pursue
efforts to specifically address star performers—in addition to their
focus on the broader issue of promoting greater female participa-
tion in general.

Third, our results suggest that simply giving women and girls
more opportunities and resources (e.g., via college scholarships,
mentoring programs, career workshops), so that more of them
enter the field, is at best an indirect solution to the issue of gender
productivity gaps specifically among star performers. Indeed,
making such resources and opportunities more available to women
could certainly attract more female researchers into these fields
and thus improve gender diversity in the overall population of
researchers. However, once these women enter a particular scien-
tific field, it is disproportionately more challenging for exceptional
women to rise to the top of the productivity distribution—which is
a separate challenge. Indeed, we found that the proportion of
women is lower and lower as we consider higher and higher levels
of performance. For example, as summarized in Table 5, 9.3% of
mathematics researchers are female in the entire sample, but the
percent is 6.2% if we consider the top 10% of mathematics
researchers, 5.2% if we consider the top 5%, and zero if we
consider the top 1%. In mathematical psychology, the percent of
women is 34.4% in the entire sample. Although this 34.4% figure
may not be perceived as an extreme underrepresentation, the
percent of women in the mathematical psychology sample is
24.3% if we consider the top 10% of researchers, 20.5% if we
consider the top 5%, and a much smaller 6.3% if we consider the
top 1%. As far as women who currently work in scientific fields
are concerned, initiatives designed to make resources and oppor-
tunities more available to them are effective only insofar as they
present additional options for accumulating productivity compo-
nents. In other words, they do not address the core of the challenge
revealed by our results, which is that women in these fields need
to accumulate more in the first place to produce the same amount
of output as men. Initiatives aimed at attracting more women into
STEM and other scientific fields may thus improve the overall
gender representation gap, but they do not necessarily help de-
constrain incremental differentiation among high-end female per-
formers. In fact, overreliance on technocratic and top-down ap-
proaches to improving women’s representation—such as gender
quotas or female-exclusive positions—may actually be ineffective
in the long run, sending people the message that their female
colleagues “are there due to preferential treatment” and providing
“an alibi for not modifying attitudes in depth” (Helmer, Schottdorf,
Neef, & Battaglia, 2017, p. 11).

Specific implications for organizations. What can organiza-
tions and professional fields do to minimize gender discrimination
and, therefore, allow incremental differentiation to occur more
unconstrained for women? First, academic departments can imple-
ment cluster hiring, which refers to the practice of hiring multiple
scholars into a department based on shared research interests
(Kossek et al., 2017). Compared with methods such as workplace
gender quotas, cluster hiring could be more effective in terms of
promoting greater gender diversity and cross-gender interactions
among researchers while also minimizing tokenism. Several insti-
tutions including the University of Illinois, University of Chicago,
and North Carolina State University have implemented cluster
hiring and found success in terms of retention and socialization of
minority members (Sgoutas-Emch, Baird, Myers, Camacho, &
Lord, 2016). Nonetheless, most institutions are hesitant to adopt
cluster hiring, as it entails a great degree of organizational change
and can generate backlash if implemented without sufficient fac-
ulty buy-in (Muñoz et al., 2017). Thus, overall, we suggest that
cluster hiring could be a challenging yet effective form of inter-
vention if implemented correctly.

Second, organizations may wish to emphasize greater fairness
and transparency regarding policies related to hiring, promotion,
and funding that can have profound effects on individual research-
ers’ future outputs (Aguinis & Bradley, 2015). In particular, orga-
nizations can focus on identifying stars based on objective mea-
sures, and then implement policies that guarantee greater
opportunities for growth, equally for women and men. For exam-
ple, academic institutions may implement a policy where individ-
uals who produce above a certain level of output (e.g., number of
publications) are given a lower cap on their subsequent allocation
of teaching loads and miscellaneous service responsibilities, thus
allowing them more time for research. This is especially relevant
for high-performing female researchers, who are more likely than
their male colleagues to be allocated greater teaching responsibil-
ities and are less likely to be promoted to leadership roles, despite
comparable achievements (Niemeier & González, 2004; Xu,
2008). As another example, a policy where high-end producers—
again, based on objective measures—are guaranteed a greater
allocation of research funding would help minimize any gender-
based discrimination in research funding among (potential) stars.

Third, organizations can consider utilizing stars, especially fe-
male stars, as a source of mentoring and coaching to help other
women in those fields increase their performance. As past research
shows, proximity to stars is linked to the career advancement of
subordinates (Malhotra & Singh, 2016), and individuals who re-
ceive coaching from star performers are more likely to increase
their own performance (Aguinis & Bradley, 2015). In particular,
mentoring from star performers who are also women may be the
most effective in terms of facilitating greater female star emer-
gence, given the homophilous aspects of mentor-protégé relation-
ships (Lockwood, 2006). Current initiatives focusing on mentoring
mostly target young women and students, and such programs are
less common within professional research institutions. As such, we
suggest that institutions implement practices that “facilitate men-
toring relationships with their stars that extends through all levels
of the organization” (Aguinis & Bradley, 2015, p. 165), especially
between female stars and other women.

Fourth, we recommend that organizations consider allocating
greater resources toward increasing (female) star retention. Again,
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although incremental differentiation emerged as the likely domi-
nant mechanism in our analyses, this does not definitively rule out
the presence of other mechanisms. Similarly, our results do not
suggest that gender discrimination is the sole cause of the observed
gender-star gap. In particular, it is possible that a part of the gap
reflects the result of greater turnover among female stars because
of gender differences in career and life choices. According to
Aguinis and O’Boyle (2014), a star’s network tends to be less
mobile than the star him- or herself. Further, to reduce star turn-
over, Aguinis and O’Boyle recommended that organizations im-
plement policies that integrate the stars’ important network con-
nections into the teams and organizations that the star serves.
Research also suggests that female stars may be less mobile than
male stars because of gender differences in career choices (Ceci &
Williams, 2011; Xu, 2008). Thus, we suggest that the effectiveness
of such initiatives may be more pronounced for female stars. For
example, turnover among stars—female stars in particular—may
be reduced if organizations provide greater assistance to top/
desirable candidates’ spouses regarding employment within the
same university, relocating to a new home, and so on (Aguinis &
O’Boyle, 2014).

Finally, as part of their efforts to increase female star represen-
tation in their organizations, managers may wish to offer idiosyn-
cratic work arrangements (i.e., I-deals)—defined as working ar-
rangements that are customized to each star performer for the
purpose of attracting, developing, motivating, and retaining the
star (Aguinis & Bradley, 2015; Aguinis & O’Boyle, 2014; Hor-
nung, Rousseau, Glaser, Angerer, & Weigl, 2010). Examples of
I-deals include increasing the number of days that a star can
telecommute (e.g., per week), allowing greater flexibility in terms
of when to work (e.g., taking the day off on Monday), and
providing additional benefits that are not included in the standard
benefits package (e.g., company-subsidized daycare, ergonomic
equipment), among others. Though the practice of providing con-
siderably higher levels of pay and performance-based pay for stars
is likely a powerful way to attract, motivate, and retain an orga-
nization’s star performers, I-deals can further help the organization
improve its attraction, motivation, and retention of elite-level
performers by serving as supplementary nonmonetary rewards
(Aguinis, Joo, & Gottfredson, 2013). In addition, by increasing the
flexibility of a star’s schedule with respect to time and location for
work, I-deals can help free up extra time for additional training and
development, which would lead to even higher levels of star
performance in the future. A key caveat here is that managers
should clearly communicate to all workers (i.e., to both stars and
nonstars) regarding the reasons for providing I-deals to stars.
Without legitimate reasons underlying I-deals or without clearly
communicating those reasons to all workers, I-deals may increase
voluntary turnover, including turnover among nonstars (Aguinis &
O’Boyle, 2014). Overall, these recommendations pertain to im-
provements in the organization’s performance management system
(Aguinis, 2019).

Limitations and Suggestions for Future Research

First, as noted earlier, the presence of a dominant generative
mechanism does not imply that it is the only mechanism at play.
Although incremental differentiation was identified as the likely
dominant mechanism, this result does not preclude the possibility

that other mechanisms also play a role—albeit a lesser one—in
creating differences in cumulative productivity. For example, dif-
ferences in ability may partially contribute to differences in male
and female star performers’ accumulation rates (e.g., rates at which
they acquire advanced scientific knowledge and mastery of various
technical skills). It is also possible that differences in ability
contribute to the observed gender productivity gaps.

Second, we examined two STEM and two non-STEM fields.
Future research could examine additional fields in an attempt to
replicate the likely dominance of incremental differentiation as the
generative mechanism. For example, there are several subfields
within the domain of materials sciences that could be investigated.
In fact, we conducted preliminary analyses based on a subset of
materials sciences journals and found that, consistent with results
from Studies 1 and 2, power law with exponential cutoff was the
best-fitting distribution for women (and, therefore, incremental
differentiation was likely the underlying dominant generative
mechanism). On the other hand, for men, the lognormal and the
power law with exponential cutoff distributions had equivalently
acceptable fit with the data. Given our results, a clear direction for
future research is to replicate the best-fit of the power law with
exponential cutoff distribution across other STEM as well as
non-STEM fields. Doing so would lead to a better understanding
of the emergence of stars and the prevalence of gender productiv-
ity gaps among stars.

Concluding Remarks

Adopting a falsification epistemological approach and using the
distribution pitting methodology to implement it, we examined the
research productivity of 59,278 researchers who have published at
least one article in the most cited journals in mathematics, genet-
ics, applied psychology, and mathematical psychology from 2006
to 2015. Results revealed that productivity distributions follow the
power law with exponential cutoff for both women and men. This
finding points to incremental differentiation as the likely dominant
generative mechanism for the production of star performers be-
cause power laws with exponential cutoffs are generated via in-
cremental differentiation. As another unique contribution, results
showed that the right-tails of the productivity distributions are
significantly lighter for women compared with men—across all the
scientific fields we examined. This finding indicates that the gen-
der productivity gap is even more extreme for star performers and,
more specifically, underrepresentation of women is more and more
extreme as we move higher and higher along the productivity
continuum. Taken together, our results make a contribution to our
understanding of the emergence of star performers and the pre-
dominant reason for the existence of a gender productivity gap
among star performers: gender-based differences in accumulation
rates, which are better explained by gender discrimination than
gender-based differences in abilities or career and life choices.

Our results also suggest that interventions aimed at reducing
constraints for incremental differentiation among women can be
useful for narrowing the gender productivity gap specifically
among star performers. Narrowing this gap is especially important
among stars because they are highly visible and play a powerful
role in shaping people’s attitudes and organizational policies.
Overall, based on the finding that women are even more under-
represented among stars, our results highlight the urgent need to
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address the gender productivity gap in STEM and other scientific
fields.
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Appendix

Log Likelihood (i.e., Absolute Fit) Values of Each Sample to Each Theoretical Distribution

Theoretical
distribution

Study 1: Mathematics Study 2: Genetics
Study 3: Applied

Psychology
Study 3: Mathematical

Psychology

Women
(N � 360)

Men
(N � 3,493)

Women
(N � 14,685)

Men
(N � 30,322)

Women
(N � 1,595)

Men
(N � 2,486)

Women
(N � 2,177)

Men
(N � 4,160)

Pure power law �256 �3,892 �15,836 �36,883 �1,772 �3,514 �1,534 �4,582
Lognormal �287 �4,189 �18,772 �42,520 �1,983 �3,895 �1,793 �5,220
Power law with

exponential cutoff �253 �3,808 �15,812 �36,756 �1,752 �3,474 �1,526 �4,547
Exponential �570 �6,172 �26,982 �58,056 �2,855 �4,963 �3,464 �7,482
Normal �423 �6,207 �37,041 �78,207 �3,076 �6,063 �3,001 �8,401
Poisson �447 �5,372 �28,774 �64,848 �2,603 �5,385 �2,785 �6,997
Weibull �407 �5,378 �26,116 �56,706 �2,582 �4,814 �2,699 �6,878

Note. N � sample size. The smaller the log likelihood’s negative value, the better is the sample’s fit to the theoretical distribution (see Equation 8). As
a cautionary note, it is not appropriate to compare log likelihood values across different samples with different sizes because a log likelihood value is a
function of not only fit but also sample size. So, a log likelihood value indicates how well a theoretical distribution fits a sample as long as it is compared
with other log likelihood values for other theoretical distributions given the same sample size.

Received September 18, 2017
Revision received May 10, 2018

Accepted May 10, 2018 �T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1306 AGUINIS, JI, AND JOO

http://dx.doi.org/10.1002/hrm.21900
http://dx.doi.org/10.1002/hrm.21900
http://dx.doi.org/10.1111/j.1365-2699.2008.01926.x
http://dx.doi.org/10.1111/j.1365-2699.2008.01926.x
http://dx.doi.org/10.1037/0012-1649.39.1.34
http://dx.doi.org/10.1177/0149206315599216
http://dx.doi.org/10.1080/00224540009600495
http://dx.doi.org/10.1080/00224540009600495
http://dx.doi.org/10.1016/j.intell.2010.04.006
http://dx.doi.org/10.1016/j.intell.2010.04.006
http://dx.doi.org/10.1146/annurev-orgpsych-032414-111322
http://dx.doi.org/10.1146/annurev-orgpsych-032414-111322
http://dx.doi.org/10.1016/j.dr.2013.08.001
http://dx.doi.org/10.1007/s11162-008-9097-4

	Gender Productivity Gap Among Star Performers in STEM and Other Scientific Fields
	Theoretical Background and Hypotheses
	Competing Conceptualizations Explaining the Gender Productivity Gap
	Gender differences in abilities
	Gender discrimination
	Gender differences in career and lifestyle choices

	Integrating Gender Productivity Gap Conceptualizations With Generative Mechanisms for Productivi ...
	Pure power law distribution and self-organized criticality
	Lognormal distribution and proportionate differentiation
	Exponential tail distributions and incremental differentiation
	Symmetric or potentially symmetric distributions and homogenization


	Study 1: Method
	Sample
	Journal Selection Criteria
	Measures
	Research productivity: Number of articles published in top-tier journals
	Gender

	Data Analytic Approach
	Distribution pitting
	Log likelihood values
	Fit parameters and descriptive statistics


	Study 1: Results
	Distribution Pitting
	Log Likelihood Values
	Fit Parameters and Descriptive Statistics

	Study 2: Method
	Sample
	Journal Selection Criteria
	Measures
	Data Analytic Approach

	Study 2: Results
	Distribution Pitting
	Log Likelihood Values
	Fit Parameters and Descriptive Statistics

	Study 3: Method
	Sample
	Journal Selection Criteria
	Measures and Data Analytic Approach

	Study 3: Results
	Distribution Pitting
	Log Likelihood Values
	Fit Parameters and Descriptive Statistics

	General Discussion
	Implications for Theory
	Implications for Practice
	General implications
	Specific implications for organizations

	Limitations and Suggestions for Future Research
	Concluding Remarks

	References
	Appendix Log Likelihood (i.e., Absolute Fit) Values of Each Sample to Each Theoretical Distribution


